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Abstract—A general solution in elliptical coordinates for the 2-dim. steady-state temperature field around an

elliptical cylinder moving with a constant velocity in a

n infinite plate is developed. Heat flux distributions

around cylinders determined from this solution are presented for values of major to minor efliptical cylinder
axes ratios of 1.0, 1.5, 2.0, 3.0 and 4.0 and for the velocity-thermal property parameter Ub/2x varying from
0052 1o 2.5. Total heat flow rates from cylinders were calculated by integration of these distributions. These
resuits are then applied to the evaluation of the efficiency of full penetration electron beam welding and for the
prediction of the ratio of penetration depth to power required for partial penetration electron beam welding.

NOMENCLATURE

a, major axis of elliptical cylinder;

b, minor axis of elliptical cylinder: (weld
width)/2;

<, specific heat capacity of plate;

ce(n. —p), function satisfying Mathicu equation
(12);

dy. electron beam diameter;

D, plate thickness;

Fek(, ~p), function satisfying modified Mathieu
equation (13);

h, {distance between foci of an ellipse)/2;

k, thermal conductivity of plate;

p. dimensionless velocity-thermal property
parameter = (Uh/4x);

qln),  local heat rate per unit area at »;

Q, total heat flow rate from cylinder for plate
thickness D;

P, power supplied by electron beam = vol-
tage x current;

r, radial distance in r-8 coordinate system:

T, plate temperature referenced to uniform
value at infinity;

T melting temperature of plate above ref-
erence value at infinity;

U, velocity of elliptical cylinder;

v term in solution for temperature depending
only on x and y;

x, y.  Cartesian coordinates in plane of plate;

Cartesian coordinate normal to plate.

Greek symbols
x, thermal diffusivity = k/pc;
8. constant relating equations (12} and (13};
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J, ratio of ellipse major to minor axes = a/b;
0, angle measured from x axis;

o mass density ;

& n, celliptical coordinates (Fig. 2);

&, function of y satisfying equation {12);

¢, function of ¢ satisfying equation (13);

w, clliptical cylinder surface parameter =

2p' % cosh &,

f. INTRODUCTION

Tut Temperature distribution around and the heat
flow from a cylinder moving through an infinite plate s
of fundamental interest and practical importance. In
contrast to the concept of a line source which involves
an infinite temperature, a cylinder of finite dimension
is a more realistic way of representing an actual heat
source. For example, as illustrated in Fig. 1. welding
with an electron beam (or a laser beam) is essentially
achieved by the movement of a cavity and the sur-
rounding molten layer through the material to be
joined. The depth to width ratio is typically on the
order of 10 or greater. Hence, to a first approximation,
the cross section defined by the outer boundary of the
molten region can be represented by acylinder. Energy
from the beam is deposited primarily on the forward
surface. As incoming material is melted, it goes into a
thin liquid layer on the forward half of the molten
region and then flows around to the rear where it
solidifies. The higher heating rates on the forward half
as compared to the rear result in an elliptical-shaped
solid boundary.

The solution for the temperature distribution
around a circular cylinder moving with a constant
velocity in an infinite plate has been derived [1]. and
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Fi6. 1. The electron beam welding process.

utilized for analyzing heat transfer in clectron beam
welding [2]. However, the temperature ficld around a
moving elliptical ¢ylinder appears to be more applic-
able to this probiem. Therefore, a formal solution for
this geometry has been obtained and is described
herein, Local heat transfer rate distributions and
integrated heat rates have been caleulated from the
solution and are presented graphically. Finally, the
utilization of the results to predict the relation between
clectron beam welding penctration and the power
required i1s demonstrated.

2. GOVERNING DIFFERENTIAL EQUATION
AND SOLUTION PROCEDURE
The problem being considered is specified schemati-
cally in Fig. 2. An elliptical-shaped cylinder of uniform
cross section in z direction is moving in an infinite plate
parallel to the x axis with a constant velocity. The
cylinder surface is at a uniform temperature T so that

= 270"

FiG. 2. Elliptical coordinates superposed on an elliptical
cylinder with 6 = a/b = 1.5

heat flow is only in the x and y directions. Assuming
constant average thermal properties and the origin of
the coordinate system fixed at the center of the
cylinder, the governing differential equation and boun-
dary conditions for the temperature T measured above
the reference at infinity are then [1]

T 8T Uer
T3ttt =0 )
cx cy % CX
=T, atrto=l (2)
— m a ul bz = . -
and
T—-0 asx—+x and yv— + », (3)

where 2 is the thermal diffusivity of the plate, U the
velocity of the cylinder, T, the temperature of the
cylinder surface. and a and b the major and minor axes
of the elliptical cylinder, respectively.

For problems involving a convection term in the
governing differential equation {Le. ¢T/¢x), the so-
lution can usually be expressed as the product of an
exponential term and a new dependent variable .
Assuming this to be possible, T = Te™ " 2 v(x. v) is
substituted in equation (1). This yiclds the following
differential equation for ¢

;.zt. . ‘12‘. U 2 (4)
R T '
“.",Z ‘1)'- 20
Boundary conditions (2) and (3) then become
x?

I'x 2x J

r=¢ "t oat 4 s = L 5

¢ R o)

r—-0 asx—-+ 7 and y— * . {6)

Because of the elliptical nature of the temperature
field, it is convenient to introduce elliptical coordinates
& and # as illustrated in Fig. 2. The relationships
between & and 4 and the Cartesian coordinates x and y
are normally expressed as

x = licosh & cos . (7

y = hsinh &siny, (8)
where 211 is the interfocal distance common to a family
of confocal ellipses and hyperbolas. Constant values of
& define ellipses and constant values of y define
hyperbolas. With & and y as the independent variables,
equations (4)-(6) become (ref. [3], p. 173)

~2 2
e EFr .
5 + —5 = 2p {cosh 2§ — cos 2, (9}
&g oy
P = cz"' feonh I, conn at ‘: = :0‘ “0)
r—0 as &— x, (i1)

with p = [(Uh).142)]%, h cosh &, = a and h sinh §,

Assuming there is a solution of equation (9) which
can be expressed as the product of a function ofyand a
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function of Z,i.e. v = @(n) - Y(&). the functions ¢ and ¥
must satisfy

5

— + (8 +2pcos2n)p =0, (12)
dn*
and
dl
d’f —(B+2pcosh2iy =0, (13)
S

where f is the separation constant. Equation (12) is
known as the Mathieu equation and equation (13) as
the modified Mathieu equation. Starting at leading
point of the elliptical cylinder (x = a, y = 0) and
moving around the upper &, curve, n changes from 0 to
n at the rear where x = —a and y = 0. Continuing
along the lower &, curve iy varies from n to 2. Since the
temperature field will be symmetrical about the x axis,
the solution of equation (12) must be an even function
of i with period 2r. Therefore, the appropriate so-
lution of equation (12) for the present problem is (ref.

[3].p.20)

o) = £ cey n. —p) = (=1

. Y (=1yA¥rcos2m
r=0
ey, =p)=(=1)

Y (=1 B cos(2r + Uy, (14)
r:0

where n = 0, 1, 2, ... and the coefficients A2 and
B2\ are functions of f and p. Values of f, A2 and
BN for selected values of p accurate to 9 places are
given in ref. [4].

The solution of equation (13) corresponding to the
sume values of # applicable for the solution of equation
{12) [that is, equation (14)], which satisfies condition
(11) is (ref. [3]. p. 165)

y n
Fekln(ét —P) = '7722',,—)

Y AR LK (uy)
r=0

’
Sine1
nB‘,”" b

¥

Z B(zzr":l” [Ir(ul K, (uz)

r=Q

- ’r . |(“|)Kp(“z)]‘

Fekln# l(é- _P) =

(15)

where g5, and s, , , are the constants for each n, [, and
K, the modified Bessel functions of order r, and u, =
p' e *and u, = p' et

The Mathicu functions ce,.(. — p) and Fek,(&, —p)
form = 0,1,2,...can be expressed in several forms [ 5],
particularly Fek, (&, — p). The forms given in equation
(15) have been found to converge more rapidly than

forms not including a product of Bessel functions (ref.
[3]. p. 257).

Combining the results from equations (14) and (15)
the product solution to equation (9) can be expressed
in the following compact form

r= 3 Cucen(n. —p)Fekn (& —p)  (16)

m=0
where the C,’'s are constants determined from con-
dition (10). From equations (10)and (16) and using the
orthogonality property of ce, (1. —p).

1 2n

Cm - elr' 3cosh :Dcosqcem . — .
2FekZo —p) L (n. —p)dn

{17

The exponential term in equation (17) can be ex-
pressed in terms of the modified Bessel function of the
first kind 1, as [5]

x

eweosn ’o(w) +2 Z l'(w)COS rn,

r=1

(18)

in which @ = 2p' ? cosh &,. Integration of equation
(17) term by term then yields for m = 2n

2(-1y .
B FI”(?)__; L (=Y 45" Ly(w) (19)
2a\50 r=0
and for m = 2n + 1,
-1y
Fekh#l(&‘o' -p)

CZn

Czul=

Y (=Y B (@) (20)

r=Q
Thus, the desired solution of equation (1) subject to
boundary conditions (2) and (3) in elliptical coor-
dinates is

T

— = e—!p"coshccovy

T

m

Y Cncenn. —p) Fek (&, ~p). (21)

m=0

Circular cylinder solution

When the minor axis b of an ellipse approaches the
value of the major axis a or vice versa, the ellipse
approaches a circle. Hence, equation (21) should
reduce to the solution for the temperature distribution
around a circular cylinder. To show this note that
when a — b or b — a, since h* = a? — b?, this means
that h — 0 and p — 0. The confocal hyperbolas then
become radii of the circle defining an angle 8. In this
case (sce ref. [3], p. 367)

ce,(n. —p)y=cosm@ (m=1),

cegln, —p) = 1/J/2.

Also when an ellipse with major axis r is made to
approach a circle with radiusr, h — 0and £ — 20 such
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that h cosh & — r, (ie. 1/2he’ — r). It can then be

shown that
¢ Ur
Feky (&, —p) = 2 Kz.(—).
n 2x
and
LY Ur
Fekypo (. — Shal S )
el 2n l(c P) n 2n l<2a)

Equation (21) then becomes

T - "./_’ cos 0
22

—_—=e

~J
a

X Ur
ol o | —
mgopmm<2°‘> (U"o)
K,|—
2x

where fis now the angle in an r-0 coordinate system, r,,
the radius of the circular cylinder,and o = 1,5, = &,
= ... = 2. The solution given by equation (22) is the
same as that derived in ref. [1] for a circular cylinder.

cosm@, (22)

3. HEAT TRANSFER FROM AN ELLIPTICAL
CYLINDER
The local heat flux g(n) from the clliptical cylinder
surface at a temperature T, into the surrounding solid
is given by
T

where k is the thermal conductivity of the solid and n
denotes the direction normal to the surface. In terms of
¢ and i the differential dn = h(cosh? & — cos? )' 2 d¢&.
Substituting this relation and introducing T, and h?
= a® — b?leads to the following nondimensional form

for the local heat flux:

q(mb _ -1 AT/T,)
kT,  [(6* = I)cosh? &y —cos?m)]' 2 & |,

(24)

where & = a/b, the ratio of the major to minor axes of
the ellipse. The equation for [(T/T,,)/0&]., is given by

AT/Tw)| —2p' tsinh & cosy + e” v
(’5 S0
. dFek (&, -
Y Cocenln, — )_‘_"'(_:___’2 25)
m=0 dg $n

where for m = 2n
dFekzn(f. —P)
d¢

gln
7rA(Zn)

[Atzn) u Kolua M (uy) + uylo(u))K (u,)]
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+ Z Atlzrn. . {uz_l Kr(ul) : [Ir- l(ul) + Ir*l(uz)]

+ 522- lr(ul) ’ [Kr— l(uz) + Krfl(uz)]}] (26)

and form=2n + 1
dFeani»l(é' —P)
dé

,
S2n+1
nB(lZn +1)

[B(lzn+”{ull<l(“2)ll(ul)
+ %z‘lo(“l) [Koluy) + Kz(“z)]}
Z B‘zzr":x”{ Koo ) [ o) + 1y (uy)]

+ uz_zl'(ul)'[Kr(“l) + Kr#l(“Z)]}]' (27)

The total heat flow rate Q from the cylinder for a
plate thickness D is given by

Q _ [T
kT,.D o 0

The RHS of equation (28) is a function of p and &,
which can be expressed in terms of the commonly used

velocity -diffusivity parameter Ub/2a and the ellipse
axis ratio 8 = a/b = ctnh {,. That is,

er—zs—f< )

Values for (Q/kT,D) were obtained by numerical
integration of the local heat flux given by equation (24).

dn. (28)

s
o

)

29)

4. RESULTS

Examples of heat flux distributions calculated from
equation (24) for values of 6 = 1.5, 2.0, 3.0 and 4.0 are
shown in Figs. 3-6. For each case distributions were
computed for values of p = (Uh/42)? of 001, 0.1,0.25,
0.5, 1.0 and 2.0. However, the curves have been labeled
according to the values of Ub/2x = (4p/(6% — 1))!?
because of the common use of this parameter. Heat
flux distributions for the limiting case of the circular
cylinder are presented in Fig. 7.

Comparison of the heat flux for 0 ~ 0 with increase
of Ubj2a for different values of § = a/b shows that the
increase is greater for cylinders with lower values of 4.
That is, the heat flux in the region of & ~ 0 increases
more rapidly with Ub/2a as the elliptical cylinders
become more blunt. Thus the highest rate of increase
occurs with a circular cylinder as shown in Fig. 7.

However. if the heat fluxes at 0 = 0 for the same
value of Ub/2z but different values of d are compared, it
is seen that g(0) increases with increasing 6. The reason
for this is that the less blunt the forward surface of the
cylinder, the heat can flow more rapidly toward the
side (i.e. toward increasing values of 0). Because of this
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FiG. 3. Heat fux distributions around an elliptical cylinder
(6 = 1.5) moving in an infinite plate.

a higher flux is required at 0 = 0for equivalent cylinder
velocities as & increases.

The general trend of the local heat flux ¢(f) can be
seen in Figs. 3-7 to decrease much more rapidly with 0
for higher values of 8. This result is of course due to the
fact that the heat flow becomes almost 1-dim. toward
the side as an ellipse becomes elongated. Note that for
é = 4 in Fig. 6 the region between 6 ~ 30-150" is
relatively constant.

Results for the total heat flow rate from elliptical
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F1G. 4. Heat flux distributions around an elliptical cylinder
{6 = 2.0) moving in an infinite plate.
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Fi1G. 5. Heat flux distributions around an elliptical cylinder
(6 = 3.0) moving through an infinite plate.

cylinderswithé = 1.0,1.5,2.0, 3.0and 4.0 are shown in
Fig. 8. For a representative value of Ub/2a = 1.0 the
total heat flux can be seen to increase by approx. 507,
as the cylinder is varied from circular to elliptical with &
= 4.0. In view of the substantial increase in surface
area (by about 2.7 from a circle to ellipse with § = 4.0)
it is surprising that the increase is not greater. The
explanation lies in the very rapid decrease of the local
heat flux around elliptical cylinders with large values
of 4.

S. APPLICATION OF RESULTS TO ELECTRON
BEAM WELDING

The solution presented in this paper provides an
appropriate boundary condition for analysis of partial
and full penetration electron beam welding and can be
used for specifying the boundary condition for analysis
of the heat flow in the molten layer. The application for
determination of power absorption in {ull penetration
and of penetration depth in partial penetration weld-
ing will be discussed in the following sections.

a)

NONDIMENSIONAL HEAT FLUX (q(8)b/ kT

—_—t,g
0 I T 1 ) & ) S—
] 30 §0 % 120 150 180

ANGLES - 8 - DEGREES

FiG. 6. Heat flux distributions around an efliptical cylinder
(6 = 4.0) moving through an infinite plate.
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Fii. 7. Heat flux distributions around a circular cylinder
moving through an infinite plate.

Full penetration welding

When a thin plate is welded, electrons can penetrate
through to the rear surface of the plate and the cavity
can become a channel, in which case part of the
electron beam power passes through the plate. This is
called full penetration and can be modeled as sugges-
ted in Fig. 9. Noting that the solid boundary of the
weld region decreases linearly from the upper to the
lower surface and assuming that the total heat flow
rate at any horizontal plane is approximately ex-

0

-
o~

w

NONDIMENMSIONAL TOTAL HEAT FLOW RATE - Q/aT ¢
S

us 2

FiG. 8. Total heat flow rate from efliptical cylinders moving
through an infinite plate.

Elactron Beam
” ;i!

/=

Weided
Region

Fi1G. 9. Electron beam welding full penetration model.

pressed by equation (29). the power P absorbed in a
plate of thickness D can be determined from

D ,
P=kT, [ f(ﬂ. 6>d:.
Jo 22

where 2y is the weld width at thedepthzand y = bat:
= 0and y = b, at = = D. For constant 2 and U, this
can be written in the following nondimensional form:

(30)

P l Uh 22 )
';\_—_ITM—E = @ J;»h",hf(w, ())dW (3”
2

in which w = Uy/2a with yvarying from by to b. When
the width of the welded region 2b is constant (ie. by =
b), which essentially occurs when a thin plate is welded
by a high power density electron beam, the non-
dimensional power is simply

P Ub
=f{=—.5)
kT,D f(.?a )

Some experimental results are given in Table 1. In this
table, the efficiency represents the ratio of the power
absorbed in the plate to the total power.

(32)

Partial penetration welding

Determining the welding conditions (beam power,
focus current, and speed) to achieve a specified pen-
etration depth in a particular material is a problem

Table 1. Efficiency in full penetration welding in 304 stainless

steel
) )
Power L.75 kW, 20kW,
tkw) {25kV, (25kV,
70 mA) 80 mA)
Speed, U 5 5
{mms™?1)
Thickness, D 2.8 1.6
(mm)
Weld width, 2b 33 23
{mm)} 23 23
Efficiency 04 02
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F1G. 10. Partial penetration depth to power ratio variation
with Ub/2a.

which has received considerable attention. A number
of different analyses and correlations have been re-
ported [2. 6] and in general all show reasonable
agreement with experimental data. Predicted results
are usually presented in terms of a nondimensional
parameter incorporating penetration depth and power
as a function of the welding speed--thermal property
parameter Ud,/2a in which d,, is the diameter of the
focused electron beam. Unfortunately, it is not exactly
clear as to how d,, should be defined. Also measure-
ments of beam intensity distributions are difficult and
impractical to make. Because of questions regarding
the value of values of beam diameter used, definitive
comparisons of measurements of different investi-
gators are difficult to make.

For an electron beam entering a cavity the fraction
reflected is small, and losses due to radiation and metal
evaporation can be shown to be negligible. Hence, all
the energy deposited in a welding cavity will be
eventually lost by conduction to the surrounding solid
because the energy which goes into melting and raising
the temperature of the liquid formed is returned in the
rear part of the molten region during solidification.

The actual cross section of the weld region in partial
penetration welding is triangular in shape. In this case,
with b, — 0 in equation (31), D becomes the pen-
etration depth H in partial penetration welding. Hence,

kT},:H - zf/b/Zz (33)
[ S(w, d)dw
0

where w denotes Uy 2z with y varying from 0 to b.
Relationships between the value of the RHS of equa-
tion (33) and the value of Ub/2x are shown in Fig. 10
for § = 1.5, 2.0 and 4.0. Applicable values of & are
expected to depend on material and welding con-
ditions. As can be observed, however, the effect of § is
not large and a mean curve corresponding to § ~ 2.0
may be adequate for general use. Comparison of
limited penectration measurements for which normal
cross sections were available show acceptable agree-
ment with predictions. Although results for aluminum
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tend to fall around the § = 1.5 line and those for
stainless steel around § = 4.0, more data are needed to
establish the applicability of the proposed model. The

new approach to predicting penetration depth leading
to Fig. 10 has a good theoretical foundation, however,
and introduces the use of the desired weld region
geometry instead of the electron beam diameter. The
latter factor is considered to be of significant practical
importance.
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APPENDIX

Range of calculations
Calculations of the heat flux distributions from equation
(24) involved evaluation of

: dFek, (& -
@ " weosn Z C.ce.ln, —p) eka(q p) .

m=0 d:

(A1)
in which w = 2p' 2 cosh &, and p = (Uh/42)%. For a given
ellipse and plate material with diffusivity a, w is a measure of
elliptical cylinder velocity. As n varies from 0 to n, the quantity
(~w cos n) varies from —w to +w. This causes the exponen-
tial term multiplying the summation in the above equation to
change from a small to a relatively large number. The
importance of this change can be illustrated by showing its
effect on the temperature at the cylinder boundary where § =

éoand T = T,. Equation (21) then becomes
T *
77| =10=e7="" F Cocenlrt. =p) Feknllo. ~p)
m o m=0

(A2)

In making calculations a value of p was first selected and the
RHS of equation {A2) was evaluated for several values of £,
(which depends on 8 = a/b). To obtain consistent heat flux
values it was found that the values of the RHS of equation
(A2) for all values of n had to be within +0.01%;, of unity.
Calculations were carried out with a PDP 11/34 computer
using single precision accuracy (7 significant places). With
this level of precision it was possible to satisfy the 0.01%
requirement for 0 < 5 < = for values of w up to approx. 5.0.
This places a limit on values of p and the axis ratio § (which
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determines £,). To show this consider the case of p = 5,6 =
1.5 (&, = 0.8047190) for which w = 6.0. Atn = n,e” """ =
4.034289 x 10°. The summation by which this is multiplied
(evaluated to 16 terms) is

18
S C.ceq(n, —5)Fek,(0.8047190, —5)

m=0
= 1.821003 x 102 — 1.825812 x 10% + 1.222649 x 10'
— 1.538394 x 10' + ... + 1231942 x 10™% — 2.011957
x 1077
= (1.821003 x 10? 4 1.222649 x 10! + ... + 1.231942
x 107%) — (1.825812 x 10? + 1.538394 x 10' + ...
+ 2011959 x 1077)
= 2441407 x 1077,

The resulting value for (T/T,),, yields a value of 0.9849340.
Using more terms does not definitely increase the accuracy
because of round-off errors in the terms already included.
Thus to extend the range of the calculations over all n higher
precision in the individua! terms of the series would be
required. On the other haad, in the region around n = 0,

%]

Y. Cacen(0, —5) Fek,(0.8047190, —5) = 4034289 x 107,
m=0
so that the temperature ratio is 0.9999996. Thus over the
forward part of a cylinder acceptable results can be obtained
for larger values of w. Fortunately the range of values of
w cos 7 for which results were obtained correspond to values
of practical interest for the parameters Ub/22 and 4.

TRANSFERT THERMIQUE A PARTIR D'UN CYLINDRE ELLIPTIQUE EN DEPLACEMENT
TRAVERS UNE PLAQUE INFINIE EN APPLICATION DU SOUDAGE PAR FAISCEAU
D'ELECTRONS

Résumé —On développe une solution générale en coordonnées clliptiques pour le champ de température

bidimensionnel permanent autour d'un cylindre elliptique se déplagant 4 vitesse constante dans une plaque

infinie. Les distributions de flux thermique autour des cylindres sont présentées pour des valeurs du rapport

d'axes du cylindre de 1,0-1,5-2,0-3.0 et 4,0 et pour 2,5. Les flux thermiques totaux sont calculés par

intégration de leurs distributions. Ces calculs sont alors appliqués d I'évaluation de I'efficacité du soudage par

faisceau d'électrons a pleine pénétration et 4 la prévision du rapport de la proflondeur de pénétration a la
puissance nécessaire pour une pénétration particlle.

WARMEUBERGANG EINES DURCH EINE UNENDLICHE PLATTE BEWEGTEN
ELLIPTISCHEN ZYLINDERS, ANGEWANDT AUF ELEKTRONENSTRAHL-SCHWEISSUNG

Zusammenfassung —Eine allgemeine Lésung in elliptischen Koordinaten fiic das zweidimensionale
stationiire Temperaturfeld um einen elliptischen Zylinder, der sich konstanter Geschwindigkeit in einer
unendlichen Platte bewegt, wurde entwickelt. Aus dieser Losung berechnete Wirmestromdichte-Verteilun-
gen um den Zylinder werden fiir Verhiiltniswerte von Haupt- zu Nebenachse des elliptischen Zylinders von
10; 1,5; 2.0; 3.0 und 4,0, und fiir Werte des Parameters aus Geschwindigkeit und thermischen Eigen-
schaften Ub/2x zwischen 0,052 und 2,5 angegeben. Der Gesamtwirmestrom des Zylinders wurde durch
Integration dieser Verteilungen berechnet. Die Ergebnisse werden zur Abschitzung der Giite von
Elektronenstrahl-SchweiBungen bei voller Eindringtiefe angewandt und zur Voraussage des Verhiltnisses
von Eindringtiefe zu erforderlicher Leistung bei Elektronenstrahi-Schweiung mit teilweisem Eindringen.

HUCCNEAOBAHUE TEMJIONEPEHOCA 3JJIMNTUYECKOIO LUUJIIUHIPA,
NEPEMEILAIOWEIOCA CKBO3b BECKOHEUYHVIO NNACTHUHY, B NPUJTOXEHUN
K CBAPKE DJIEKTPOHHBIM MYYKOM

Aunsorauns — B anauntuveckx koopanHaTax nonyyeto obiuee peuctine TR RBYMCPHOro CTaUHOHAD-
HOTO TEMNEPATYPHOTO NOAA B OKPECTHOCTH WUTHNTHYECKOTO LHIHHAPA, ABHXYLWIETOCA C NOCTORHHOM
CKOpPOCTBIO CKBOIb GeckOHCYHYI0 naacTuHy. 1o ITHM pelucHHAM HafaeHbl pacnpeacicHHa TEM.10BOro
[OTOKA BOKPYF IH/IHNAPOB ANS OTHOLUCHHHA INAHNTHYCCKHX ocedl, pasubix 1,0; 1,5; 2,0: 3.0 1 4.0 u
s amanazona Ub/2x (cxopocts — Tennosoil napamerp) or 0,052 no 2.5. Cymmapubie Teni1osuie
NOTOKH PACCHHTHIBATHCH MHTCTPUPOBAHHEM MONYYCHHBIX pacnpenencuuit. PeaynbTaTsl 3aTEM HCNMOAD-
30BA/THCH 19 ONEHKH HPBHCKTHBHOCTH CBAPKH WICKTPOHHBIM 1YHKOM, MPOHHKAIOUIHM Ha BCIO rayGuny
MATCPHANA, H UTA PACYCTa OTHOLUCHHA FNYGHHBI NPOHUKHOBCHHA MYYKa K MOUIHOCTH, Tpebyemoit npu
CBAPKE C YUCTHYHBIM NPOHHKHOBEHHEM DIICKTPOHHOrO Nyuxa.



