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Abstract-A general solution in elliptical coordinates for the 2-dim. steady-state temperature field around an 
elliptical cylinder moving with a constant velocity in an infinite plate is developed. Heat fiux distributions 
around cylinders determined from this solution are presented for values of major to minor elliptical cylinder 
axes ratios of 1.0. 1.5.2.0.3.0 and 4.0 and for the vc)~ity-thermal property parameter LIh/2z varying from 
@Of2 to 2.5. Total heat Row rates from cylinders were calculated by integration of rhex distributions. These 
resultsare then applied to theevatuationoftheefficiency offull penetrationeiectron beam weldingandfor the 
prediction of the ratioofpenctration depth to power required For partial penetration electron beam welding. 

a. major axis of elliptical cylinder; 

b, minor axis of elliptical cylinder: (weld 

width)/2; 

c, spe&c heat capacity of plate; 

&?* -p). function ~tisfying Mathieu equation 

(12); 
d 
LI: 

electron beam diameter; 

plate thickness; 

Frk({, -p). function satisfying modified Mathieu 

equation (13); 

(distance between foci of an ellipse)/l; 

thermal conductivity of plate; 

dimensionless velocity-thermal property 

parameter = (Ul1/4~)~ ; 
local heat rate per unit area at t1; 

total heat Row rate from cylinder for plate 

thickness D ; 
power supplied by electron beam = vol- 

tage x current; 

radial distance in r-6 coordinate system; 

plate temperature referenced to uniform 

value at infinity; 

melting temperature of plate above ref- 

erence value at infinity; 

velocity of elliptical cylinder; 

term in solution for temperature depending 

only on .Y and _v; 

Cartesian coordinates in plane of plate; 

Cartesian coordinate normal to plate. 

Greek symbols 

31. thermal diffusivity = k;fJc; 

P* constant relating equations (12) and (13); 

ratio ofellipse major to minor axes = u/b; 
angle measured from .Y axis; 

mass dunsity ; 
elliptictll coordinates (Fig. 2); 

function of tl satisfying equation (12); 

functjon of 4 satisfying equation (13); 

elIiptics1 cylinder surface parameter = 

2p’ 2 cash &,. 

I. fY(‘WOINKY%~N 

Tttt: ~t~~ts’t~~~rt~~~ distribution around and the heat 

flow from a cylinder moving through an infinite plate is 

of fundamental interest and practical importance. In 

contrast to the concept of a line source which involves 

an infinite temperature, a cylinder of finite dimension 

is a more realistic way of representing an actual heat 

source. For example, as illustrated in Fig. 1. welding 

with an electron beam (or a laser beam) is essentially 

achieved by the movement of a cavity and the sur- 

rounding molten layer through the material to be 

joined. The depth to width ratio is typically on the 
order of IO or greater. Hence, to a first approximation, 

the cross section defined by the outer boundary of the 

molten region can be represented by a cylinder. Energy 

from the beam is deposited primarily on the forward 

surface. As incoming material is melted, it goes into a 

thin liquid layer on the farward half of the molten 

region and then flows around to the rear where it 

solidifies. The higher heating rates on the forward half 

as compared to the rear result in an elliptical-shaped 

solid boundary. 

The solution for the tem~rature distribution 

around a circular cylinder moving with a constant 
velocity in an infinite plate has been derived [1]. and 
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FIG. 1. The electron beam wetding process. 

utilized for analyzing heat transfer in electron henm 

welding [2]. However, the temperature kid around a 

moving elliptical cylinder appears to be more applic- 

able to this problem. Therefore, a formal solution for 

this geometry has been obtained and is described 

herein. Local heat transfer rate distributions and 

integrated heat rates have been cakuiatcd from the 

solution and are prcscntcd graphically. k’inally. the 

utilization of the results to predict the relation between 

electron beam welding ~tletr~Ition and the power 

required is demonstrated. 

2. (;oVt:WSt\(; 1)ltw:Ht:S’I’I;\1. t:yUA’l’lo~ 
A>11 SOI.U’I’I0.S PWOCEDlJttE: 

The problem being considered is specified schemnti- 

tally in Fig. 2. An elljptic~l-shack cylinder of t:niform 

cross section in : dirtvtion is moving in an infinite plate 

parallel to the s axis with a constant velocity. The 

cylinder surface is at a uniform temperature ‘r,,, so that 

Ftc,. 2. Elliptical coordinates superposed on an elliptical 
cylinder with 6 = cl,% = 1.5. 

heat flow is only in the ?I and J directions. Assuming 

constant average thermal properties and the origin of 

the coordinate system fixed at the center of the 

cylinder. the governing differential equation and boun- 

dary conditions for the temperature T measured above 

the reference at infinity are then [l] 

and 

T-O as.~-+r andyA+ r. (3) 

where z is the thermal diffusivity of the plate. tr the 

velocity of the cylinder, T, the temperature of the 

cylinder surface, and u and h the major and minor axes 

of the elliptical cylinder, respectively. 

For problems involving a convection term in the 

governing differential equation (i.e. c’T,‘?.r). the so- 

lution can usually be expressed as the product of an 

exponential term and a new dependent variable r. 

Assuming this to be possible, T = T,,,r-’ ’ 2X r(s. y) is 

substituted in equation (I). This yields the following 

diikrentinl equation for L’: 

ISoundary conditions (2) and (3) then become 

r-+0 ass+&-, andp-t+-,.. (6) 

Because of the elliptical nature of the temperature 

field, it isconvenient to introduceellipticalcoordinatcs 

< and g as illustrated in Fig. 2. The relationships 

between < and tl and the Cartesian coordinates s and _t 

are normaIly expressed as 

s = II cash 5 cos ‘I, (7) 

)’ = /I sinh < sin t/q (8) 

where 2Ii is the interfocal distance common to I family 

ofconfocal ellipses and hyperbolas. Constant values of 

c define ellipses and constant values of tl define 

hyperbolas. With {and ~1 as the independent variables. 

equations (-t-(6) become (ref. (33, p. 173) 

,:2[ (‘2, 

TS.7 = 2p (cash 2,5 - cos 2ri)l; (9) 
(h‘ t ‘Pf 

L. = e:r’ 'coth ;,, <or, at f = &. (W 

r-+0 3s <- %. (11) 

with p = [(L’It) (-kz)]~. Ir cash 5, = u and II sinh 5, 

= h. 

Assuming there is a solution of equation (9) which 
can be expressed as the product of a function of q and a 
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function of <. i.e. c = &a) .4(C). the functions I$ and I++ 

must satisfy 

(12) 

and 

d’+ 
dC’ - (B + 2p cash 2;)IL = 0. (13) 

where p is the separation constant. Equation (12) is 

known as the Mathieu equation and equation (13) as 

the modified Mathieu equation. Starting at leading 

point of the elliptical cylinder (.x = a. y = 0) and 

moving around the upper to curve, 4 changes from 0 to 

n at the rear where s = -a and y = 0. Continuing 

along the lower <,, curve r/ varies from n to 2~. Since the 

temperature field will be symmetrical about the .Y axis, 

the solution of equation (I 2) must be an even function 

of r/ with period 2n. Therefore. the appropriate so- 

lution of equation (12) for the present problem is (ref. 

[3]. p. ?I) 

,=O 

(‘ez, (t Cl I. -p) = (-I) 

i (-I)‘Bp;,” cos (2r + I )r/. ( 14) 
, 10 

where tr = 0, 1.2.... and the cocfhcicnts A\:’ and 

B’(t’,” are functions of /I and p. Values of /I. A’:;’ and 

tijt++,” for selected values of p accurate to 9 places are 

given in ref. [4]. 

The solution of equation (13) corresponding to the 

same values of/I applicable for the solution ofequation 

(12) [that is, equation (14)], which satisfies condition 

(I I) is (ref. [3]. p. 165) 

-p) = -+ 
0 

I 
i 4? ~r(U*vwd 

r-o 

ICI(;) = 

Fek Zn+ I(<. -PI = * 
I 

I 

1 B';,"++," C~,(u,K+ I(U2) 
r-0 

- I,, ,(~,wt~,)]. (15) 

whcrc g;, and s;, + , are the constants for each 11. I, and 

K, the modified Bessel functions of order r. and u, = 

p’ ‘em: and n2 = p’ ‘e:. 

The Mathicu functions cc,(r), - p) and F‘ek,(& - p) 
for rn = 0, I, 2,. . . can be expressed in several forms [5], 

particularly Fek,(<. -p). The forms given in equation 

(I 5) have been found to converge more rapidly than 

forms not including a product of Bessel functions (ref. 

[3], p. 257). 

Combining the results from equations (14) and (15) 

the product solution to equation (9) can be expressed 

in the following compact form 

r = i C,ce,(q, -P) FeUS. -PI, (16) 
m=o 

where the C,‘s are constants determined from con- 

dition (IO). From equations (lO)and (16) and using the 

orthogonality property of ce,&, -p). 

c, = 
1 

nfek,,(50. -P) 
e&J 'CO~:OcOSVcem(q, -p)dq. 

(17) 

The exponential term in equation (17) can be ex- 

pressed in terms of the modified Bessel function of the 

first kind I, as [5] 

eolco., 
= I,(w) + 2 i I,(w) cos r?/, (18) 

,=L 

in which w = 2~’ ’ cash Co. Integration of equation 

(17) term by term then yields for n~ = 2n 

C2" = Fek;~;Oy+$o(- ~)'42?'~2r(4 (19) 

and for rrr = 2n + I. 

C 
2(-lY 

2"hI = 
Fek (’ 2n+L Lo* -P) 

i (-lYf4%+,"~2,+*(~). (20) 
P=O 

Thus, the desired solution of equation (1) subject to 

boundary conditions (2) and (3) in elliptical coor- 

dinates is 

T _ = ,-2p"c0&:c0r~ 

T, 

i Cnce,(v, -p)Fek,,,(S, -P). (21) 
m=O 

Circular cylinder solution 

When the minor axis b of an ellipse approaches the 

value of the major axis (1 or vice versa, the ellipse 

approaches a circle. Hence, equation (21) should 

reduce to the solution for the temperature distribution 

around a circular cylinder. To show this note that 

when a + b or b + a, since h2 = a2 - b2, this means 

that h + 0 and p -+ 0. The confocal hyperbolas then 

become radii of the circle defining an angle 0. In this 

case (see ref. [3]. p. 367) 

ce,(q, -p) = cosd (m L I), 

ce,(rl. -P) = I/$. 

Also when an ellipse with major axis r is made to 

approach a circle with radius r. h + 0 and t + m such 
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that h cash C + r. (i.e. 1/2he: - r). It can then be 

shown that 

Fuk,,(,S. , 

and 

Equation (21) then becomes 

T l/r - - COIO 

T,=e = 

cos mf7. (22) 

where 0 is now the angle in an r-0 coordinate system. r0 

the radius of the circular cylinder, and i+, = 1. I:, = I:* 

= . . . = 2. The solution given by equation (22) is the 

same as that derived in ref. [I] for a circular cylinder. 

3. HEAT TRANSFER FROM AN ELLll’llCAL 
CYLIHIXR 

The local heat flux q(q) from the elliptical cylinder 

surface at a temperature T, into the surrounding solid 

is given by 

ST 
q(s) = - k - , 

dn 5, 
(23) 

where k is the thermal conductivity of the solid and n 

denotes the direction normal to the surface. In terms of 

t and 4 the differential dn = h(cosh’ < - cos’ q)’ ’ d<. 

Substituting this relation and introducing T, and hz 

fir 

u2 - b* leads to the following nondimensional form 

the local heat flux: 

q(rl)b -1 ?(T/T,) 
-= 
kT, [W - I )(cosh’ Co - cos’ r~)]’ * (‘5 :,,’ 

(24) 

where 6 = a/b. the ratio of the major to minor axes of 

the ellipse. The equation for [C(T/T,,,)/C’[]~~, is given by 

W/T,) 

?t &I 
= -2~’ 2 sinh to cos I) + e-‘“co’rl 

i c,ce,&. -p) dFck,::* -p)/ * (25) 
#VI=0 :. 

where f )r nr = 2n 

dFek,,(C. -P) 

dC 

=-- Ab’“’ (u,K,b,V,(u,) + uJ,b,)~;,b,): 

I 

+ C A;:'. 
r=* 

2 K,@,) . [I,- *(u1) + I,+ ,(%)I 

+ : I,@,). [K,- ,bz) + K,+ ,@A] 
II 

(26) 

and for m = 2n + I 

dFek r.+,(& -P) 

d< 

~K+,W[L-Au,) + I,+,b,)] 

+ ~&,,+W,) + K,+Al(Jl 
II 

. (27) 

The total heat flow rate Q from the cylinder for a 

plate thickness D is given by 

Q -= -2 
” (7(T/T,) 

kT,D s I -- dt/. (28) 
0 (Y :#, 

The RHS of equation (28) is a function of p and [,. 

which can bc cxprcsscd in terms of the commonly used 

velocity -dilfusivity parameter Uh/Za and the ellipse 

axis ratio J = a/b = ctnh <,,. That is, 

(29) 

Values for (Q/kT,D) were obtained by numerical 

integration of the local heat flux given by equation (24). 

4. RESULTS 

Examples of heat flux distributions calculated from 

equation (24) for values of 6 = 1.5,2.0,3.0 and 4.0 are 

shown in Figs. 3-6. For each case distributions were 

computed for values of p = (Uh/4z)’ of 0.01, 0.1,0.25, 
0.5. 1.0 and 2.0. However, the curves have been labeled 

according to the values of Uh/2z = (4p/(# - 1))’ ’ 

because of the common use of this parameter. Heat 

flux distributions for the limiting case of the circular 

cylinder are presented in Fig. 7. 

Comparison of the heat flux for 0 w 0 with increase 

of Ub/Za for dilferent values of S = u/h shows that the 

increase is greater for cylinders with lower values of 6. 

That is. the heat flux in the region of U z 0 increases 

more rapidly with Uhi2a as the elliptical cylinders 

become more blunt. Thus the highest rate of increase 

occurs with a circular cylinder as shown in Fig. 7. 

However. if the heat tluxes at 0 = 0 for the same 

value of Uh/2x but different valucsofd arecompared. it 

is seen that q(O) increases with increasing 5. The reason 

for this is that the less blunt the forward surface of the 

cylinder, the heat can flow more rapidly toward the 

side (i.e. toward increasing values of 0). Because of this 
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FIG. 3. Heat flux distributions around an elliptical cylinder 
(d = 1.5) moving in an infinite plate. 

a higher flux is required at 0 = 0 for equivalent cylinder 

velocities as S increases. 

The general trend of the local heat flux y(0) can be 

seen in Figs. 3-7 IO decrease much more rapidly with 0 

for higher values of 6. This result is of course due to the 

fact that the heat flow becomes almost l-dim. toward 

the side as an ellipse becomes elongated. Note that for 

6 = 4 in Fig. 6 the region between 0 5 30-150” is 

relatively constant. 

Results for the total heat flow rate from elliptical 

r-----l 

0 30 46 90 120 150 II0 

ANGLE-~-DEGREES 

2 
x 

0 IO 40 120 I50 160 

ANGLES-8-DEGREES 

FIG. 4. Heat flux distributions around an elliptical cylinder FIG. 6. Heat flux distributions around an elliptical cylinder 
(5 = 2.0) moving in an infinite plate. (6 = 4.0) moving through an infinite plate. 

Ub i;; : 1.0 

I L& 0x4 
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FIG. 5. Heat flux distributions around an elliptical cylinder 
(d = 3.0) moving through an infinite plate. 

cylinders with 6 = I .O, I 52.0.3.0 and 4.0are shown in 

Fig. 8. For a representative value of Ub/Za = 1.0 the 

total heat flux can be seen to increase by approx. Son/; 

as thecylinder isvaried fromcircular toelliptical with 5 

= 4.0. In view of the substantial increase in surface 

area (by about 2.7 from a circle to ellipse with 6 = 4.0) 

it is surprising that the increase is not greater. The 

explanation lies in the very rapid dccrcase of the local 

heat flux around elliptical cylinders with large values 

of 6. 

5. Af’l’LICAllOS OE’ RESL’LIS -I’0 ELECTRON 
BEAM WIXINN~; 

The solution presented in this paper provides an 

appropriate boundary condition for analysis of partial 

and full penetration electron beam welding and can be 

used for specifying the boundary condition for analysis 

of the heat flow in the molten layer. The application for 

determination of power absorption in full penetration 

and of penetration depth in partial penetration weld- 

ing will be discussed in the following sections. 
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7. Heat flux distributions around a circular cylinder 
moving through an infinite plate. 

When a thin plate is welded. ektrons can penetrate 

through to the rear surface of the plate and the cavity 

can become a channel, in which case part pf the 

electron beam power passes through the plate. This is 

called full penetration and can be modeled as sugges- 

ted in Fig. 9. Noting that the solid boundary of the 

weld region decreases linearly from the upper to the 

lower surface and assuming that the total heat ilow 

rate at any horizontal plane is approximately ex- 

I.0 

Ub 2U 

Frc. 8. Total heat flow rate from elliptical cylinders moving 
through an infinite plate. 

FIG, 9. Electron beam welding full penetration model. 

pressed by equation (29). the power P absorbed in a 

plate of thickness D can be determined from 

P = kT, c:‘l( g, d)dr. (30) 

where 2.~ is the weld width at the depth : and )’ = hat : 

=Oand.r=b,at:= D. For constant a and ff. this 

can be written in the following nondimensional form : 

P I I 
lh 2, 

-=_ 

ATlIP ~(h-f’,) (h,,,il 

f(w. S)dw (31) 
--_ 

‘a 

in which w = Uy/Za with yvarying from h, to h. When 

the width of the welded region 2h isconstant (i.e. b, = 

h), which essentially occurs when a thin plate is welded 

by a high power density electron beam, the non- 

dimensional power is simply 

Some experimental results are given in Table I. In this 

table, the efficiency represents the ratio or the power 

absorbed in the plate to the total power. 

Determining the welding conditions (beam power, 

focus current, and speed) to achieve a specified pen- 

etration depth in a particular material is a problem 

Table 1. Efficiency in full ~netration welding in 304 stainless 
Sld 

(1) (2) 

Power 

(kw) 

Speed, U 
(mm s-l) 

Thickness, D 

(mm) 

Weld width, 2b 

(mm) 

Efficiency 

1.75 kW, 
(25 kV. 
70 mA) 

5 

2.0 kW. 
(ZS kV, 
80 mA) 

5 

2.8 

3.3 2.3 

2.3 2.3 

0.4 0.2 

1.6 
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FIG. 10. Partial penetration depth to power ratio variation 
with LlbiZz. 

which has received considerable attention. A number 

of dilTerent analyses and correlations have been re- 

ported [Z. 6] and in general all show reasonable 

agreement with experimental data. Predicted results 

are usually presented in terms of a nondimensional 

parameter incorporating penetration depth and power 

as a function of the welding spced~ thermal property 

parameter Utf,,/Za in which cl, is the diameter of the 

focused electron beam. Unfortunately, it is not exactly 

clear as to how d, should bc defined. Also mcasurc- 

ments of beam intensity distributions are difticult and 

impractical to make. Bccausc of questions regarding 

the value of values of beam diamster used. dcfinitivc 

comparisons of measurements of dilTcrcnt invcsti- 

gators are difficult to make. 

For an electron beam entering a cavity the fraction 

reflected is small, and losses due to radiation and metal 

evaporation can be shown to be negligible. Hence, all 

the energy deposited in a welding cavity will be 

eventually lost by conduction to the surrounding solid 

because the energy which goes into melting and raising 

the temperature of the liquid formed is returned in the 

rear part of the molten region during solidification. 

The actual cross section of the weld region in partial 

penetration welding is triangular in shape. In thiscase, 

with h, + 0 in equation (31). D becomes the pen- 

etration depth H in partial penetration welding. Hence. 

kTJ Ub/2z 

P l’h 21 (33) 

ID J-(‘v* s)dw’ c 

where H’ denotes Lry’2r with _V varying from 0 to b. 
Relationships bctwcen the value of the RHS of equa- 

tion (33) and the value of fJh,‘Zz are shown in Fig. IO 

for 6 = 1.5. 2.0 and 4.0. Applicable values of 6 are 

expected to depend on material and welding con- 

ditions. As can be observed, howcvcr, the effect of d is 

not large and a mean curve corresponding to d c 2.0 

may be adequate for pcncral use. Comparison of 

limited pcnctration measurements for which normal 

cross sections wcrc available show acceptable agree- 

ment with predictions. Although results for aluminum 

tend to fall around the 6 = 1.5 line and those for 

stainless steel around 6 = 4.0, more data are needed to 

establish the applicability of the proposed model. The 

new approach to predicting penetration depth leading 

to Fig. IO has a good theoretical foundation, however. 

and introduces the use of the desired weld region 

geometry instead of the electron beam diameter. The 

latter factor is considered to be of significant practical 

importance. 
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APPENl)IX 

Runqe oj cukulufions 
Calculations of the heat flux distributions from equation 

(24) involved evaluation of 

in which 0) = 2p’ ’ cash e,, and p = (Uh/42)‘. For a given 
ellipse and plate material with dilTusivity a. w is a measure of 
ellipticalcylinder velocity. Asq varies from0 to n, thequantity 
(-0~ cos q) varies from -Q to +o. This causes the exponen- 
tial term multiplying the summation in the above equation to 
change from a small to a relatively large number. The 
importance of this change can be illustrated by showing its 
ellect on the temperature at the cylinder boundary where i = 
<,, and T = ‘F,. Equation (21) then becomes 

T 

r, &, 

= 1.0 = e-‘~m* i C,ce,(q, -p) Pek,(&, -p). 
II .o 

(A2) 

In making calculations a value oCp was Iin! selected and the 
RIIS of equation (A?) was evaluated for several values of <,, 
(which depends on d = u,‘b). To obtain consistent heat flux 
values it was found that the values of the RtiS of equation 
(AZ) for all values of 9 had to be within kO.OlY: of unity. 
Calculations were carried out with a PDP I l/34 computer 
using single precision accuracy (7 significant places). With 
this level of precision it was possible to satisfy the 0.01% 
requirement for 0 5 9 5 X for values of (0 up to approx. 5.0. 
This places a limit on values of p and the axis ratio 6 (which 
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determines &,). To show this consider the case of p = 5.6 = 
1.5 (’ - 0.8037190) for which w = 6.0. At 7 = n, e-““’ = $0 - 
4.034289 x 10’. The summation by which this is multiplied 
(valuated to 16 terms) is 

F C,ce,(n, -5) Fek,(0.8037190, - 5) 
m-0 

= I.821003 x 10’ - 1.825812 x 10’ + 1.222649 x 10’ 

- 1.538394 x 10’ + + 1.231942 x 10-s - 2.011957 

x to-’ 

= (1.821003 x 10’ + 1.222649 x 10’ + . . . + 1.231942 

I 10-s) - (1.825812 x 10’ + 1.538394 x 10’ + . . . 

+ 2.011959 x IO-‘) 

= 2.441407 x lo-‘. 

The resulting value for (T/7,,,):, yields a value of 0.984934O. 

Using more terms does not definitely increase the accuracy 
because of round-08 errors in the terms already included. 

Thus to extend the range of the calculations over all 7 higher 
precision in the individual terms of the series would be 

required. On the other hand. in the region around 7 = 0. 

f C,ce,(O, -5) Fek,(0.8047190. -5) = 4.034289 x 10’. 
nl-0 

so that the temperature ratio is 0.9999996. Thus over the 
forward part of a cylinder acceptable results can be obtained 
for larger values of w. Fortunately the range of values of 
UJ cos q for which results were obtained correspond to values 
of practical interest for the parameters Ub/Zx and 6. 

TRANSFERT THERMIQUE A PARTlR D’UN CYLINDRE ELLIPTIQUE EN DEPLACEMENT 
TRAVERS UNE PLAQUE INFlNlE EN APPLICATION DU SOUDAGE PAR FAISCEAU 

D’ELECTRONS 

RCsumP-On dCvcloppc une solution gtntrale en coordonnles clliptiques pour Ic champ de tcmp&ature 
bidimensionnul permanent autour d’un cylindre elliptiquc se diplacant d vitessc constantc dans une plaque 
infinie. Lcs distributions de flux thermiquc autour dcs cylindrcs sent prCsentics pour dcs valeurs du rapport 
d’axcs du cylindrc de 1.0-1.5-2.0-3.0 et 4.0 et pour 2.5. Lcs flux thermiques totaux sont calculCs par 
intCgration de Icursdistributions. Ccscalculs sont alorsappliquCs ii I’lvaluation de ltfficacitldu soudage par 
faisaau d’Clcctrons ;i plcinc p&titration et ;I la prCvision du rapport de la profondcur de witration d la 

puissana nCassaire pour une p&&ration parlicllc. 

W~RME~BERGANC EINES DURCH EINE UNENDLICHE PLAlTE BEWEGTEN 
ELLIPTISCtIEN ZYLINDERS. ANGEWANDT AUF ELEKTRONENSTRAHL-SCHWElSSUNG 

Zusammcnfassung -Eine allgcmeinc L6sung in elliptischen Koordinatcn fiir das zwcidimcnsionale 
stationiirc Tcmperaturfeld urn einrn elliptischen Zylindcr. dcr sich konstanter Geschwindigkeit in einer 
unendlichcn Platte bcwcgt. wurdc entwickelt. Aus dieser LBsung bcrechnete Wirmestromdichte-Vcrteilun- 
gcn urn den Zylindcr wcrdcn fiir Vcrhiltniswcrte von llaupt- zu Nebcnachsc des clliptischen Zylindcrs von 
1.0; 1.5 ; 2.0; 3.0 und 4.0. und fiir Wcrte dcs Parameters aus Gcschwindigkcit und therm&hen Eigen- 
schaftcn Uh/Zy zwischcn 0.052 und 2.5 angcgcbcn. Der GesamtwPrmestrom des Zylinders wurde durch 
Integration diexr Verteilungcn berechnct. Die Ergebnissc wcrdcn zur AbschPtzung dcr Giitc von 
Elektroncnstrahl-SchweiBungen bei voller Eindringtiefe angewandt und zur Voraussage dcs Vcrhiltnisscs 
von Eindringticfe zu erforderlicher Lcistung bci Elcktroncnstrahl-SchweiBung mit teilwciscm Eindringen. 

MCCJlEflOBAHME TEllflOflEPEHOCA 3JlJlMl-lTM’-lECKOl-0 lJMJlMHAPA. 
flEPEMElJ.lAlOll.lEl-OCll CKBO3b SECKOHEqHYlO I-U-IACTMHY. B llPMJlOXEHMM 

K CBAPKE 3JlEKTPOHHblM flYrlKOM 

Aaaorauan - B ?nnHnrHqecKtix KoopnHHaTax nonyqeHo 0611tee ~CIIICHHC JLIR nsyMepttoro crauHonap- 
HOI‘0 ~c~ncpa~ypn~r0 norm a OKpCCTWCTH 3,lJtHnTH’tCCKOrO UtinHHnpa, naHmcyuterOCR c nocrORHHOR 
cwopocrblo ctcnoJb B~c~0ti~~iyi0 nnacTHtty. Ilo ~JTHM petuc~~a~ HaRneHbt pacnpcnenet:Hn Ten.loBoro 
IIOTOKa BOKpyr ,t”,W,l,l~OB Jt,lrt O+HOLuCHHfi 3nJlHnTHWCKHX 0CCfi. paaI,btX 1.0; 1.5; 2.0; 3.0 H 4.0 H 
NIW nHana1ona Uh/2r (CKopocTb - Tcnnosofi napaMeTp) OT 0.052 no 2.5. CyMhiaprtble Ten,lOBLlC 
nOTOKH PaCC’,HTblBa.lHCb HHTCrpHpOBaHHCM nOJly’WHHblX paCt’QW,CnCHHR. PC3yJtbTaTbI YaTCM HCIlOJlb- 
3OBa.lHCb A.lR OWHKH ~~KTHBIIOCTH CaapKH WtCKT,J0HHblM nyVKOM. npOHHKai0lltHM Ha aCl0 rny6HtIy 
MaTepwana. H nnfl paCWZTa OTHO~~CI~HX rny6HHu nponHKHoeeHHn nyrKa K MOut~0c-rH. TpcByevoii npH 

CaapKC C ‘(BCTH’tHbIM npOHHKHOBCHHCM 3JTCKTp0HHOrO nyYKa. 


